• What Happens After a ‘Million-Mile Battery’ Outlasts the Car?

    This story originally appeared on Grist and is part of the Climate Desk collaboration.

    Electric vehicles (EVs) have a clear environmental advantage over their gas-guzzling counterparts, but when it comes to longevity, the two are in a dead heat. Two hundred thousand miles is considered a good, long run for a car built today, regardless of whether it’s powered by a lithium battery or an internal combustion engine. But if a flurry of recent reports are to be believed, EVs may soon surge ahead in this long-distance competition—not by mere thousands of miles, but by 800,000.

    Recently, multiple EV battery makers have announced the imminent arrival of “million-mile” batteries, power packs that supposedly have enough juice to be driven to the moon and back twice. In May, a top executive at General Motors said the company was “almost there” on development of a million-mile battery; in June, Chinese

  • Covid-19 Immunity May Rely on a Microscopic Helper: T Cells

    That makes it difficult to know if vaccine developers are really on the right track. Their hunch is based, primarily, on how the immune system responds to other pathogens. But some viruses evade the typical patterns. They short-circuit the immune response. The most infamous example of that is HIV, Wherry says, which attacks the very T cells that would coordinate the immune response to the virus. SARS-CoV-2 has already offered its own twists and turns, like its propensity to prompt runaway immune responses. For Covid-19, “there’s no prototypical immune response, especially in severe cases,” Wherry says.

    Lately, though, systematic studies of T and B cell responses to SARS-CoV-2 have begun to elicit some patterns. Recently, researchers at the La Jolla Institute for Immunology looked at T cell responses in what they considered “average” cases of the disease—people who got sick but didn’t need to be hospitalized. In a study

  • Will We Recognize Life on Mars When We See It?

    Percival Lowell wasn’t the first to think he’d discovered life on Mars, but he was among the last. In the late 19th and early 20th centuries, the American astronomer published a series of books promoting his theory that observable features on the surface of the Red Planet were the handiwork of an intelligent species on the verge of extinction. The objects of Lowell’s fascination—and the wider astronomy community’s scorn—were the so-called “Martian canals,” which he believed were used to route water from the planet’s ice caps.

    Outer Space, Alien, Travel, Galaxy

    The WIRED Guide to Aliens

    Everything you need to know about SETI, the Drake equation, ’Oumuamua, and hot tubs.

    NASA has been robotically exploring Mars since the mid-’60s, and because of these missions we’re now fairly certain that the planet isn’t home to any extraterrestrial engineers. (Sorry, Percy.) But these spacecraft did find an abundance of geological evidence that Mars may once have had

  • How to Read Covid-19 Research (and Actually Understand It)

    A typical study has six major parts. They generally begin with an abstract, which briefly describes the question the researchers were trying to answer, what data they collected, and what the results were. Then the introduction and literature review sections set the stage and tell readers more about the ideas the researchers were exploring and what previous studies have found. The methods section explains exactly how the study was conducted, which allows other researchers to repeat the experiment to see if they get the same results. Then the results, discussion, and conclusion sections break down what the scientists found and what that might mean. The authors might also bring up any problems or questions they encountered, and suggest avenues for further study. When reading the conclusions, it’s important to understand that the scientists’ data set might support or contradict a hypothesis, but it won’t definitively prove or disprove a hypothesis.

  • This Company Wants to Rewrite the Future of Genetic Disease—Without Crispr Gene Editing

    That can spell real trouble for the bacteria on the receiving end of this gene shuffle. If those MGEs insert themselves into critical gene regions, it’s bye-bye bacteria. “You can think about MGEs the same way you can think about mutations,” says Peters. “We wouldn’t have evolved without them, but 99.99999 percent of them are bad. Bacteria are trying at any cost to stop MGEs from destabilizing their genome.”

    The Nobel Prize-winning botanist Barbara McClintock discovered the first known class of MGEs, called transposons, or “jumping genes,” in maize in 1931. Her technique for staining the plant’s chromosomes allowed her to see when chunks from one would jump to another. But for many decades, the purpose of all these repeated sections of self-rearranging DNA eluded scientists. Some went so far as to dub the MGE-heavy sections of the human genome “junk DNA.” It was hard to get funding to study

  • The Epic Siberian Journey to Solve a Mass Extinction Mystery

    “I really wanted to find this place that was rumored where there were a lot of rocks that result from explosive volcanic eruptions,” Elkins-Tanton says, “because that’s the only way that we know of that you can effectively drive chemicals into the upper atmosphere where they’ll get spun around the whole planet.” She was closing in on the geological signals of apocalyptic climate change.

    Before this region of Siberia tried to destroy all multicellular life on the planet, it was a peaceful inland sea, which dried up and left an “evaporite basin.” The water’s evaporation deposited a layer of limestone and minerals rich in chlorine and bromine—think of it as being like the gunk that’s left when you forget coffee or tea in a cup. Eventually, a swamp grew on top of this mineral layer. As plants and animals decomposed, they deposited layers of coal, oil, and gas. “So basically